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The QCDSP machines were designed for lattice gauge calculations. For planning it is crucial to explore this 
architecture for other computationally intensive tasks. Here I describe an implementation of a simple message 
passing scheme. With the objective being simplicity, I introduce a small number of generic functions for manipu- 
lating a large data set spread over the machine. I test the scheme on three applications: a fast Fourier transform, 
arbitrary dimension SU(N) pure lattice gauge theory, and the manipulation of Fermionic Fock states through a 
distributed hash table. These routines compile both on QCDSP and a Unix workstation. 

1. I n t r o d u c t i o n  

The massively parallel QCDSP supercomput- 
ers located at Columbia University and the 
RIKEN/BNL Research Center [1] were explicitly 
designed for large scale lattice gauge calculations. 
The machines are primarily run with software 
highly tuned tuned for four dimensional lattices 
with an internal SU(3) gauge group. As such, 
they have effectively been serving as special pur- 
pose machines for a single problem. 

An open question is whether whether this ar- 
chitecture is sufficiently flexible for more general 
tasks. With this in mind, as well as with a per- 
sonal desire to explore the the machine, I devel- 
oped a simple message passing scheme. My goal 
is a small number of generic functions for manip- 
ulation of a large data set spread over the entire 
machine. 

For a machine to be "general purpose" has two 
prerequisites. First is a compiler in a higher level 
language. This is provided by the optimizing Tar- 
tan C / C + +  compiler from Texas Instruments. 
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Second is an efficient communication scheme be- 
tween the individual nodes. The rich software en- 
vironment of the Riken/BNL/Columbia collabo- 
ration provides this for the primary application of 
the machine. In this mode the machine, while ca- 
pable of MIMD operation, runs in a SIMD man- 
ner. A high degree of tuning obtains excellent 
performance, up to 30% of the theoretical peak 
speed of the machine. 

In contrast, the aim of the project described 
here is a highly flexible communication package 
for rapid prototyping of a variety of problems. In 
the process, some efficiency loss is expected. I 
hide the basic geometry of the machine from the 
top level, and applications are developed entirely 
in a higher level language. The source and more 
details are available on the web [2]. The goal is 
similar to but much less ambitious than the MPI 
project [3]. 

2. Top level 

My top level interface is designed with simplic- 
ity as the primary goal. The usage begins with 
the definition of a basic data type, and proceeds 
with a small number of routines for manipulation 
of a large assembly of objects of this type. For 
example, in the case of lattice gauge theory the 
data type might be SU(3) matrices. After the 
basic type is defined, the communication pack- 
age is included, making available several routines 
to manipulate such objects. A call to the func- 
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tion a l l o c a t e  (n) sets up space for n items of this 
type. The way the allocation is spread over the 
processors is meant to be fully hidden. In the case 
of lattice gauge theory one would allocate space 
for the total number of links. 

The scheme revolves about three basic func- 
tions to manipulate the allocated objects. First 
s t o r e ( i ,  ~ item) stores the data item at the 
i ' th  allocated location. The complementary func- 
tion f e t c h ( i ,  & item) recovers the item. Any 
processor can store or fetch any item, and need 
not know on which processor it is stored. 

After stacking up a number of stores or 
fetches, all processors call a synchronizing func- 
tion worksync (). This allows the communication 
to proceed, with the data being passed until all 
pending stores and fetches are completed. While 
multiple stores/fetches can occur simultaneously, 
there is no guarantee of the order in which events 
are completed. When worksync() returns, the 
machine is synchronized. 

For efficient loops over the variables, it is useful 
to know what data is stored on the current node. 
This is accomplished with the boolean function 
onnode ( i ) ,  which returns true if item i is local. 

In addition to the basic interface, there are sev- 
eral conveniences available. A variant of s to re  (), 
add( i ,  & item) adds the new item to whatever 
is already stored in location i. This improves ef- 
ficiency in eliminating the need to fetch the old 
stored value, which could be on a distant proces- 
sor. A variant of f e t c h ( )  obtains multiple stored 
items in parallel. 

A few utility functions are included, such 
as global sums and broadcasts. A function 
cmalloc()  attempts to malloc space in the fast 
memory on the processor chip. These and similar 
functions will presumably eventually be built into 
the machine operating system. 

To test these routines, I implemented a "fast 
Fourier transform", a pure gauge code, and a 
Grassmann integration routine involving manip- 
ulation of large Fock spaces via hash table tech- 
niques. The FFT code works by recursively sub- 
dividing the lattice, giving each half to half the 
remaining processors. Once a sub-lattice is as- 
signed to only one processor, the procedure is a 
standard FFT. After assigning the various tasks, 

the results are combined, which involves heavy 
communication. The dominance of communica- 
tion makes the overall process discouragingly slow 
compared to running on a workstation. 

My pure gauge code is more satisfying, running 
at about 2/3 the speed of the equivalent code of 
the RIKEN/BNL/Columbia collaboration. How- 
ever, it is extremely flexible, allowing an arbitrary 
number of space time dimensions, each of arbi- 
trary even size. The group is an arbitrary S U ( N ) .  
Much of the communication speed is due to the 
ability to fetch several neighbors at once using the 
multiple fetch function. 

The Grassmann integration implementation 
works particularly well. The algorithm is based 
on Ref. [4], and involves a large distributed hash 
table, spread over all the processors. Each proces- 
sor handles a portion of this table, sending stores 
non-locally to randomly chosen other processors. 
The efficiency is primarily due to the parallel na- 
ture of the communication, and the fact that an 
item in the process of being stored is not needed 
for immediate computation. The primary limi- 
tation of the algorithm is the exponentially large 
amount of memory required, quickly exhausting 
the limited amount on the current machine. 

The distributed hash table uses simple ex- 
tensions of the communications class. Instead 
of a single data type, two are used. One, 
hindex, is a type used to index the other, 
an hvalue. After defining these classes, in- 
cluding the file hashcom. C in turn includes the 
communication routines. Storing an item uses 
hs to re  (hindex, hvalue),  while fetching involves 
the complementary hvalue h fe tch(h index) .  
The function worksync() is used as before for 
the communication to proceed. The storage is 
random over the entire machine. 

To manipulate the table, each processor han- 
dles his local part. On storing, the final loca- 
tion is unknown, but is not needed by the algo- 
rithm. Parallel loops over the table are fast since 
all operations are carried out locally and the non- 
local storage proceeds in parallel. The processor 
needs only occasionally check for active messages 
to keep the communication running. 
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3. Mid d le  level  

My goal was to keep the details of the commu- 
nication as hidden from the top level as possible. 
The data is passed around in messages, the ba- 
sic message structure containing the identities of 
the source and destination processors, one data 
element, a verb to indicate what to do with the 
data (store, fetch, acknowledge, error, etc.), and 
an extra word for various purposes, such as to 
carry the index of the element. 

The machine architecture is a four dimensional 
toroid with nearest neighbor serial connections. 
While these are in principle bi-directional links, 
for simplicity I always send messages in one of 
the positive directions. Each processor listens for 
incoming messages on the negative wires. Thus 
any particular serial connection is used in only 
one direction. The advantage is simplicity, while 
the disadvantage is that the messages may not 
follow the shortest path to their destination. A 
store and acknowledge combination between dif- 
ferent processors circles the machine. 

Given a message, a lookup table determines 
which wires lead closer to the destination. The 
first free one is used. If none are free, the message 
enters a queue. In this scheme all wires can be 
simultaneously active. The route from one pro- 
cessor to another is not predetermined, but pro- 
gresses according to the currently available wires. 

At this level, several internal functions appear. 
First, senchae s s age () selects and activates a wire 
to start a message traveling. If no wire is avail- 
able, the message is put in a FIFO queue. The 
complementary function readmessage()  checks 
the incoming wires for a completed transmis- 
sion and forwards messages not for the current 
processor. A function handlemessages()  calls 
readmessage() ,  performs any requested actions, 
sends acknowledgements, and checks the message 
queue. The function worksync() works by re- 
peatedly calling handlemessages()  until all un- 
finished stores and fetches are completed. 

4. B o t t o m  level  

The basic communication works through the 
custom serial communication unit (SCU) of the 

individual nodes. Program initialization fixes the 
SCU registers for the message size and sets the 
receive address registers to buffers in ram. 

To send a message, a write to a send address 
register starts the transfer. Monitoring progress 
uses a poll of the SCU status register. This is all 
implemented in C / C + + ,  without any assembly 
language. 

The function worksync() uses two (of three) 
global interrupt lines available on the machine. 
One flags unfinished stores/fetches. When this 
line is set by all processors, a second interrupt 
synchronizes the machine. I also currently use 
the interrupt lines for global ands, broadcasts and 
sums, but these will presumably eventually be re- 
placed by operating system functions. 

5. S u m m a r y  

I have described a simple interface to the 
QCDSP machines. The goal is rapid prototyping 
of new ideas in a high level language. I compro- 
mise efficiency for flexibility. For most problems 
I expect a loss of a factor of 2 to 3 in speed. The 
test examples show varying performance. The 
FFT functions somewhat disappointingly; here 
all the complexity is in non-local communication. 
For a simple lattice gauge algorithm the approach 
performs nicely, with more flexibility than in the 
highly tuned production code. Remarkably, for 
the Fock state manipulations involved in evalu- 
ating Grassmann integrals, the performance was 
excellent up to system sizes where inherent mem- 
ory limitations appear. 

R E F E R E N C E S  

1. For an overview of the machine, see 
"http://www.ccd.bnl.gov/riken_bnr'. 

2. For the explicit details and programs, see 
"http://thy.phy.bnl.gov/creutz/qcdsp/". 

3. The MPI home page is at "http://www- 
unix.mcs.anl.gov/mpi/". 
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